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1. Introduction

Pure spinors have turned out to be extremely useful in supersymmetric field theory and

string theory. They were used in an attempt to solve the auxiliary field problem for

N = 1, d = 10 super Yang-Mills (SYM) theory [1], but they made their first appearance

in the modern sense in [2, 3] where it was shown how one could derive the equations

of motion for d = 10, N = 1 SYM and supergravity, including the gauge sector Chern-

Simons term, and for d = 11 supergravity, from the postulate of pure spinor integrability.

This amounts to assuming the existence of a BRST operator formed by contracting the

pure spinor with a suitable fermionic derivative. In the case of supergravity one has to

use either loop superspace or membrane superspace in order that the two- or three-form

potentials in d = 10 or d = 11 supergravity can be reinterpreted as one-form gauge fields
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in the functional superspaces. Moreover, in [4 – 6], a version of heterotic string theory

was given with N = 2 worldsheet supersymmetry in which pure spinor variables arise

naturally. Somewhat later, the pure spinor variables were reinterpreted as ghosts [7] thereby

giving rise to a version of superstring theory which can be quantised in a way which

preserves spacetime supersymmetry manifestly. In a series of papers (see [8] for a review

and references) it was shown how particles and various strings could be formulated in terms

of pure spinors with the latter acting as ghosts for both kappa-symmetry and worldsheet

reparametrisations. An attempt was also made to describe the membrane in a similar way

but this is as yet not fully understood [9], while d = 11 pure spinors have also been used

to describe superparticles and topological M-theory [10, 11]. Supergravity constraints and

pure spinors in d = 10 and d = 11 have recently been discussed from the perspective of

free differential algebras [12 – 15].

Pure spinors also arise naturally in the cohomology of superspace, called spinorial

cohomology in [16]. Indeed, the spinorial cohomology groups for purely odd forms (i.e.

all odd indices), turn out to be isomorphic to the pure spinor cohomology groups if we

adopt the definition that a pure spinor λ satisfies λγaλ = 0. This coincides with the usual

definition in d = 10 but not in d = 11 where a pure spinor in Cartan’s sense also obeys

λγabλ = 0. There are also spinorial cohomology groups with an additional vector index [16],

relevant to the deformations of the dimension zero torsion, and groups for forms with mixed

even and odd indices [17]. The main application of spinorial cohomology groups has been

to the analysis of allowed deformations of theories with maximal supersymmetry for which

it is believed that there are no off-shell versions [16 – 23].1 The absence of auxiliary fields

means that one cannot write down higher-order invariants straightforwardly; instead they

have to be constructed using only the physical fields.

The construction of such invariants is the main topic of this paper. The idea is to

combine the cohomological approach with the superform (“ectoplasm”) method [25 – 27] of

constructing invariant integrals in d-dimensional spacetime from closed d-forms in super-

space. This was discussed for d = 11 in [17] and the general theory has been described in

a talk [28]; some results were also given in an earlier paper [29].

The organisation of the paper is as follows: in the next section we briefly review the

superform method, we discuss superspace cohomology in general, including cohomology

groups for odd forms taking their values in ∧kT0, where T0 is the even tangent bundle, and

we give some simple examples of invariants. In section 3 we discuss the cohomology groups

for N = 1 supersymmetry in d = 10 and 11 and show how they can be used to construct

invariants. In section 4 we apply the theory to the explicit construction of various invariants

in the N = 1, d = 10 heterotic superstring effective action and show that most of them, up

to order α′3, can be completely determined in this manner. These N = 1, d = 10 invariants

are also related to terms in the Type I superstring effective action by the usual heterotic-

Type I duality symmetry. We then discuss in section 5 the relation of the invariants to

pure spinor superstring scattering amplitudes, as well as possible generalisations to d = 11

and d = 10, N = 2 supergravity theories.

1For a recent discussion of the non-maximal case see [24].
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2. Invariant integrals

2.1 Ectoplasm

In this subsection we shall briefly review the superform or ectoplasm method for con-

structing superinvariants [25 – 27]. This gives an elegant and practical way of computing

superspace integrals if the dimension of spacetime is small enough and can also be useful for

invariants which correspond to subsuperspace integrals. It is closely related to the notion

of rheonomy in the group manifold approach to supersymmetry [30] and the generalized

action principle [31].

Let M be a supermanifold with d even dimensions, and let M0 denote its body. Let

s : M0 →M be a section of the projection π : M →M0, and let Jd be a closed d-form on

M . We claim that the integral

I :=

∫

M0

s∗Jd (2.1)

is independent of the choice of section, provided that we are allowed to neglect surface

terms. Since the vertical directions in M correspond to the odd coordinates, it follows

that the integral I is invariant under supersymmetry. Note also that I is unchanged if we

replace Jd by Jd + dKd−1, so that we are really interested in the dth de Rham cohomology

group. Note, however, that we are only interested in forms that can be constructed from

the physical fields of the theory under discussion, so that the relevant cohomology group

is Hd
d (phys), and this can be non-trivial even if the space itself is topologically trivial.

Indeed, we shall assume that spacetime is topologically trivial throughout the paper.

We sketch a proof of this claim. Let ft be a one parameter family of diffeomorphisms

of M generated by a vector field v, define the family of sections st by st = ft ◦ s and set

It =

∫

M0

s∗tJd =

∫

M0

s∗ ◦ f∗t Jd . (2.2)

Then

d

dt
It|t=0 =

∫

M0

s∗£vJd (2.3)

=

∫

M0

s∗(dιvJd + ιvdJd)

=

∫

M0

d(s∗ιvJd) . (2.4)

Hence if we assume the fields in the integrand fall off fast enough at infinity, or if M0

is compact, we see that the right-hand-side vanishes thus justifying the claim. In practice,

it is usual to take s = e, the zero section, e(x) = (x, 0). In this case we have

I =

∫

ddx εmd...m1Jm1...md
(x, 0) . (2.5)

The superspaces of interest to us have the property that their tangent bundles T can

be split invariantly into even and odd parts, T = T0 ⊕ T1, with corresponding local bases
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EA = (Ea, Eα). If v is an odd vector field, v = vαEα, we can identify the leading component

of vα with the parameter of local supersymmetry, and the above discussion shows that the

integral is indeed supersymmetric.

Equation (2.5) allows one to compute a component invariant integral systematically

even in a curved superspace. Letting EM
A denote the supervielbein which relates coordi-

nate bases to preferred bases, and identifying the spacetime vielbein and gravitino fields by

em
a := Em

a| and ψm
α := Em

α|, where the bar denotes evaluation of a superfield at θ = 0,

we have

I =

∫

ddx εm1...md
(

emd

ad . . . em1

a1Ja1...ad
+ d emd

ad . . . em2

a2ψm1

α1Jα1a2...ad
+ · · ·

. . . + ψmd

αd . . . ψm1

α1Jα1...αd

)

, (2.6)

where each of the Js is evaluated at θ = 0.

2.2 Cohomology of superspace

In order to tackle the cohomology question it is useful to introduce the notion of (p, q)

forms, forms with p even and q odd indices with respect to a preferred basis. If we let Ωp,q

denote the space of such forms2 we have

Ωp,q ∋ ω =
1

p!q!
Eβq . . . Eβ1Eap . . . Ea1ωa1...apβ1...βp

, (2.7)

where Ea (Eα) are preferred even (odd) basis forms dual to the basis vector fields Ea (Eα)

introduced above.

The exterior derivative splits into four parts,

d = d0 + d1 + t0 + t1, (2.8)

with bi-degrees (1, 0), (0, 1), (−1, 2), (2,−1) respectively [32]. It is easiest to write these

using covariant derivatives and the torsion. Thus d0 ∼ Ea(∇a+Ta·
·) and d1 ∼ Eα(∇α+Tα·

·)

are even and odd derivatives while t0 and t1 are algebraic operations involving the dimension

zero and three-halves components of the torsion tensor. The operation t0 applied to a (p, q)-

form consists of contracting one of the even indices with the upper index on the dimension

zero torsion, Tαβ
c, followed by symmetrisation over the (q + 2) odd indices.

The identity d2 = 0 splits into various components,

t20 = 0

d1t0 + t0d1 = 0

d2
1 + d0t0 + t0d0 = 0 , (2.9)

together with some others which will not be needed in the following. The first of the

above equations allows us to introduce the cohomology groups Hp,q
t , the space of t0-closed

(p, q)-forms modulo the t0 exact ones [32]. The groups H0,q
t := Hq

t can be thought of as

2We use subscripts rather then the more usual superscripts for reasons which will become clear shortly.
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(generalised) pure multi-spinors. When N = 1 and the dimension-zero torsion takes its

usual form, Tαβ
c = −i(γc)αβ, an element of this group can be represented by a multi-spinor

with q symmetrised indices which is gamma-traceless on each pair. Such an object is clearly

equivalent to an ω of the form

ω = λα1 . . . λαqωα1...αq (2.10)

where λ obeys the constraint

λα(γa)αβλ
β = 0 . (2.11)

In d = 10 such a spinor is a pure spinor in the sense of Cartan but this is not always

the case.

We can also define t0-cohomology groups for (0, q)-forms taking their values in ∧kT0;

these will turn out to be useful for finding the Hp,q
t groups. To do this let us first define

the space Ωk,l
p,q consisting of (p, q) forms taking their values in ∧kT0 ⊗ ∧lT1, i.e the space

of (p, q)-forms which are also (k, l)-multivectors. The dimension-zero torsion can be made

to act in two ways on this space: firstly, we define t0 to act as before, i.e. ignoring the

multivector indices, and secondly we define a new operation t0 : Ωk,l
p,q → Ωk+1,l−1

p,q+1 . In

components these operations are given by

(t0ω)b1...bk,β1...βl
a1...ap−1,α1...αq+2

=
(q + 1)(q + 2)

2
T(α1α2

cωb1...bk,β1...βl

|ca1...ap−1|,α3...αq+2) , (2.12)

and

(t0ω)
b1...bk+1,β1...βl−1
a1...ap,α1...αq+1 = (−1)p+q+1(k + 1)(q + 1)ω

[b1...bk,|β1...βl−1γ|
a1...ap,(α1...αq

Tαq+1)γ
bk+1] . (2.13)

It is straightforward to show that t := t0 + t0 is nilpotent,

t2 = 0 ⇔ (t0)
2 = (t0)2 = t0t

0 + t0t0 = 0 . (2.14)

The operation t maps ⊕Ωk−r,l+r
p−r,q+r to ⊕Ωk−r,l+r

p−r−1,q+r+2 where the sum is over all integers

r. We shall be interested in the cohomology groups (Ht)
k,0
0,q := Hq

t (∧kT0). Since elements

of Ωk,0
0,q are annihilated by t0 and t0, this group is given by elements of this space modulo

elements of the form t0λ+ t0ρ where λ ∈ Ωk,0
1,q−2 and ρ ∈ Ωk−1,1

0,q−1 .

The groups Hp,q
t will form the starting point for the analysis of the cohomology groups

we are interested in. To go further we shall define the spinorial cohomology groups Hp,q
s .

To do this we first define an odd derivative ds which acts on elements of Hp,q
t . We set

ds[ω] := [d1ω] , (2.15)

where the square brackets denote equivalence classes in Ht [17]. This definition makes

sense because t0 anticommutes with d1. This means that the right-hand side is unchanged

if ω → ω + t0ρ, for some ρ ∈ Ωp+1,q−2, and also that t0d1ω = 0 because t0ω = 0. It is now

easy to show that d2
s = 0. We have

d2
s[ω] = ds[d1ω]

= [d2
1ω]

= [−(t0d0 + d0t0)ω]

= 0 , (2.16)
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where we have used (2.9). Given that d2
s = 0 we can define the cohomology groups Hp,q

s

in the obvious way: Hp,q
s := Hds

(Hp,q
t ). The groups H0,q

s are isomorphic to the pure

spinor cohomology groups Hq
Q. The latter are defined by acting on multi-pure spinors ω

of the type given in (2.11) by Q = λα∇α. This operator squares to zero in a supergravity

background if the latter obeys pure spinor integrability.

We note in passing that one can also define spinorial cohomology groups for (0, q)-forms

taking their values in ∧kT0. Let h ∈ Ωk,o
0,q = Ω0,q(∧kT0). We can define an odd exterior

derivative on such objects as follows:

(d1h) · ω = d1(h · ω) + (−1)q+1h · d1ω , (2.17)

where ω ∈ Ωk,0 and where the dot denotes contraction on all the even indices. Explic-

itly,

(d1h)
a1...ak
α1...αq+1

= (q + 1)∇(α1
ha1...ak

α2...αq+1) +
q(q + 1)

2
T(α1α2

γha1...ak

|γ|α3...αq+1)

+ (−1)q+1k(q + 1)h
[a1...ak−1|b|
(α1 ...αq

Tαq+1)b
ak ] . (2.18)

A straightforward computation shows, provided that the dimension zero torsion is

covariantly constant, that

d2
1h = t0λ+ t0ρ (2.19)

for some (computable) λ ∈ Ωk,0
1,q and ρ ∈ Ωk−1,1

0,q+1 . We can therefore define ds[h] = [d1h] and

Hq
s (∧kT0) = Hds

(Hq
t (∧kT0)).

Now suppose we want to compute the de Rham cohomology group Hn
d ; we have to

find an n-form Jn satisfying dJn = 0, modulo shifts of the form Jn → Jn + dKn−1. The

lowest-dimensional component of J is J0,n; it satisfies

t0J0,n = 0 (2.20)

trivially and is subject to the gauge transformation

δJ0,n = t0K1,n−2 . (2.21)

It is therefore given by an element of H0,n
t . Now consider the (0, n + 1) component of

dJ = 0,

d1J0,n + t0J1,n−1 = 0 . (2.22)

This is equivalent to

ds[J0,n] = 0 . (2.23)

This pattern continues as the dimension is increased: the possible solutions to the de

Rham cohomology problem are generated by elements of the spinorial cohomology groups

Hp,q
s where p+ q = n. To find possible integral invariants using the superform method we

therefore have to study the groupsHp,q
s ; p+q = d. However, it should be borne in mind that

not every such group element will lead to an integral invariant in flat superspace because

it could fail to contain Jd,0 amongst its derived components. These are the invariants we

are most interested in and will be the focus of the rest of the paper. The invariants which

vanish in flat superspace will be referred to as nilpotent invariants.
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2.3 Simple examples

A very easy example is given by N = 1, d = 2 superspace. The standard geometry is

determined by conventional constraints. The non-zero components of the torsion tensor are

Tαβ
c = −i(γc)αβ

Taβ
γ = (γc)β

γS

Tab
γ = −iεab(γ5)

γδ∇δS , (2.24)

where S is a scalar superfield whose components are a dimension one auxiliary field, the

gravitino field strength and the curvature scalar. The cohomology group H0,2
t consists of

scalar functions which can be identified with possible superspace Lagrangians. Using the

freedom to make K transformations we can choose

J0,2 = iγ♮
0,2J0 , (2.25)

where γ♮
0,2 denotes “γ5” considered as a (0, 2)-form. Similarly, we write

γp,2 =
1

2.p!
Eap . . . Ea1EβEα(γa1...ap)αβ . (2.26)

It is easy to compute the components of J2; they are

Jαβ = i(γ5)αβJ0

Jaβ = (γ5γa)αβ∇βJ0

Jab = −εab(i∇α∇αJo + 2SJ0) . (2.27)

Given a particular J0 we can compute its components and then find the spacetime

action using (2.6). For example, the action for a spinning string may be obtained by taking

J0 = ∇αX · ∇αX , (2.28)

where X is the string field.

In d = 2, for any N , the curvature two-form Rab is equal to εabF , where dF = 0.

The supergravity action, which is purely topological as for N = 0, is then given by setting

J2 = F .

In d = 3 the standard N = 1 superspace constraints are also purely conventional, with

Tαβ
c = −i(γc)αβ again. In this case we need to look for closed three-forms. It is easy to

see that H0,3
t = 0 and that H1,2

t is the space of scalar functions. We can choose J1,2 to be

J1,2 = iγ1,2J0 , (2.29)

where J0 is the superspace Lagrangian. As in the d = 2 case is it straightforward to

compute the component action using (2.6).

A more complicated example is provided by d = 4, N = 1 supergeometry. The groups

H0,4
t andH1,3

t are certainly not zero, but they cannot be used to generate Lagrangians forms

which give rise to non-zero invariants in flat superspace. The simplest possibility arises at

– 7 –
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the next order and makes use of a non-vanishing element of H2,2
t [26]. In two-component

notation we can take

Jabγ̇δ̇ := Jαα̇,ββ̇,γ̇δ̇ = εαβε(α̇|γ̇|εβ̇)δ̇J0 (2.30)

which will lead to a solution of dJ = 0 if J0 is a chiral superfield, ∇̄α̇J0 = 0. This gives rise

to a chiral invariant, i.e. an integral over chiral superspace of J0. To get a full superspace

integral one simply has to write J0 in terms of two anti-chiral derivatives acting on some

scalar superfield S.

The chiral example generalises straightforwardly to d = 4, N = 2 and indeed to higher

N , although these are more complicated. There are other types of invariant in N = 2 as

can be seen from the superaction approach [33] or from harmonic superspace [34] (see [35]

for a discussion of the relation between the two). In [36] some examples were derived

from higher-rank closed forms in harmonic superspace from which one can obtain closed

four-forms by integrating over the harmonic two-sphere.

2.4 An example of a nilpotent invariant

Consider on-shell d = 4, N = 1 supergravity in the absence of matter. The field strength

superfield is a chiral dimension three-halves field Wαβγ obeying

∇αWβγδ = Cαβγδ , (2.31)

where Cαβγδ is the totally symmetric Weyl spinor. If we set

Jαβγδ = Cαβγδ (2.32)

with all other components of J with four spinor indices taken to vanish, then we claim that

dJ = 0 if the other non-vanishing components of J are

Jaβγδ =
1

4
∇aWβγδ

Jabγδ = εα̇β̇

(

1

4
W(αβ

ǫWγδ)ǫ + ε(α|γ|εβ)δW
2

)

, (2.33)

where we have used the standard correspondence between a vector and a pair of spinor

indices and where W 2 denotes the complete contraction of two W s. For example, the fact

that ∇(αJβγδǫ) = 0 follows immediately from (2.21).

2.5 Chern-Simons invariants

The invariants that can be constructed using the superform method fall broadly into two

classes: strict invariants, for which all the non-vanishing components of J are tensorial, and

the remainder, which can involve gauge potentials or perhaps explicit θs. Many examples

of invariants of the second type arise as Chern-Simons invariants, i.e. they include Chern-

Simons terms together with, generically, many other tensorial terms which are required

by supersymmetry. The general theory of such terms is as follows [37]: let W be a closed

(d + 1)-form on a superspace M whose body M0 has dimension d, and suppose that W is

– 8 –
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written explicitly as dZ where Z is a (local) d-form that involves gauge potentials; if W

can also be written as dK, where K is a tensorial d-form, then

J := K − Z (2.34)

is a closed d-form which one can use to form invariants using the superform method. Z

obviously gives rise to the Chern-Simons or Wess-Zumino term while K will give the rest

of the bosonic terms which go with it. Since W is a (d+1)-form it follows that it is exact in

de Rham cohomology since the latter coincides with that of the body for a supermanifold.

However, it might not be the case that it is exact for the right coefficients, which will be the

space of physical fields in most examples, and therefore exactness, or Weil triviality [38],

has to be checked explicitly in each case. A class of examples of this type is provided by

Green-Schwarz actions for various branes [31, 37]; the superform method therefore provides

a rather neat explanation of the relation between the kinetic and Wess-Zumino terms in

such actions. Another example is the R4 invariant in d = 11 which includes the anomaly-

cancelling Chern-Simons term for the fivebrane [17].

3. N = 1 in d = 10 and d = 11

In this section we shall study the theory of the possible invariants that can arise in super-

gravity backgrounds in N = 1, d = 10 and d = 11. We shall make the analysis subject to

the assumption that the Ht cohomology groups are determined by the allowed p-branes.

We do not have a proof of this statement but we know of no counterexample.

3.1 N = 1, d = 10

The allowed p branes have p = 1 or p = 5. These couple to two- and six-form potentials

respectively and there are therefore associated closed three- and seven-form field strengths.

The dimension-zero components of these are proportional to γ1,2 and γ5,2 respectively, both

of which are annihilated by t0.

The groupH0,q
t := Hq

t is isomorphic to the space of totally symmetric, gamma-traceless

q-spinors, i.e. the space of pure q-spinors. For p = 1 it is easy to see that H1,0
t = 0 while

H1,1
t is equal to the space of odd vector fields. An example of this occurs in on-shell

d = 10 super Maxwell theory. If F denotes the field strength two-form, F0,2 = 0, so that

t0F1,1 = 0, and the solution to the latter equation being given by an element of H1,1
t ; in

fact, it is the physical fermion field. There are two contributions to H1,2
t ; the first is given

by (1, 2)-forms ω of the form

ω1,2 = γ1,2f (3.1)

where f is an arbitrary function. However, for q > 2, there are no further non-trivial

solutions that can be constructed using γ1,2; this follows from the identity

(γa)(αβωγ1...γr) = (γb)(αβ(γba)γ1

δωγ2...γr)δ , (3.2)

where r = q− 2. In other words, t0-closed (1, r+ 2)-forms of the type γ1,2ω0,r are t0-exact.

– 9 –
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The remaining non-trivial possibilities are generated with the aid of γ5,2. We find

Hp,q
t ⊇ Hq−2

t (Λ5−pT0) , (3.3)

provided that p ≤ 5 and q ≥ 2. To illustrate this consider a t0-closed (3, q + 2)-form ω; if

it is non-trivial it can be written

ω3,q+2 = γ5,2λ
2,0
0,q , (3.4)

where the notation indicates that two of the even indices of γ5,2 are contracted with the

even indices on λ. It is easy to see that changing λ by t0ρ
2,0
1,q−2 will lead to a t0-closed change

to ω and it is not difficult to see that the same will be true if we change λ by t0ρ1,1
0,q−1. Hence

the correct cohomology group is indeed Hq
t (∧kT0) as claimed. If the brane assumption is

correct, therefore, the non-vanishing Hp,q
t cohomology groups for N = 1, d = 10 are

H0,q
t = Hq

t

H1,1
t = Ω1,0

0,0

H1,q
t = Hq−2

t (Λ4T0) + δq2 Ω0,0
0,0, q ≥ 2

Hp,q
t = Hq−2

t (Λ5−pT0), q ≥ 2; p ∈ {2, 3, 4, 5} . (3.5)

In order to form superinvariants the possible starting points for constructing closed

ten-forms are given by the cohomology groups Hp,q
t with p + q = 10 and p ≤ 5. We have

H0,10
t = H10

t , the space of ten-fold pure spinors, while Hp,q
t

∼= Hq−2
t (Λ5−pT0) for 1 ≤ p ≤ 5.

However, it turns out that only H5,5
t can give rise to non-nilpotent integral invariants,

because it is not possible to obtain non-zero J10,0s from any of the other possibilities. An

element of H5,5
t can be written

J5,5 = γ5,2f0,3 , (3.6)

where f0,3 determines an element of H3
t . It is easy to see that the lowest-order constraint

on J5,5 coming from dJ = 0 will be satisfied if

ds[f0,3] = 0 , (3.7)

or, equivalently, f is in third pure spinor Q-cohomology group. Starting from this, one can

go on to find a solution for the rest of J . Note that if one were to be interested in nilpotent

invariants starting from some other Jp,q, for example J3,7, then one would have to make

use of the generalised spinorial cohomology groups Hk
s (ΛlT0).

In flat superspace the pure spinor cohomology groups were analysed previously in [39],

where it was shown that the only possibilities arise for 0 ≤ q ≤ 3 and that H3
Q corresponds

to possible actions. This provides direct confirmation of the claim made above that there

are no other possibilities. On the other hand, the superform method remains valid in the

presence of a non-trivial supergravity background; if we can find elements of H0,3
s then we

can systematically find complete invariants using the superform construction.
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3.2 N = 1, d = 11

The situation in d = 11 is slightly simpler from the cohomological point of view since the

only scalar brane is the membrane. Thus the Ht groups are generated by γ2,2 which is t0
closed, but not exact, by the membrane identity. The non-trivial Ht groups are

H0,q
t

∼= Hq
t

H1,q
t

∼= Hq−2
t (T0), q ≥ 2

H2,q
t

∼= Hq−2
t , q ≥ 2 . (3.8)

To find a closed 11-form we therefore need to consider H11
t , H8

t (T0) and H7
t . The

analysis of [9] suggests that it is the last of these groups which is important for non-

nilpotent invariants. Thus we need to start with a (2, 9)-form of the type

J2,9 = γ2,2f0,7 . (3.9)

If [f0,7] satisfies

ds[f0,7] = 0 (3.10)

this procedure will generate a closed 11-form and hence an invariant. Again, this analysis

will be valid in the presence of a non-trivial supergravity background.

4. Heterotic invariants

4.1 Conventions

The on-shell constraints for d = 10, N = 1 supergravity were first written down in [40]

and there have since been many reformulations. For our purposes it is most convenient

to describe d = 10 supergravity in terms of the partially on-shell 128 + 128 multiplet [41];

it is dual to the supercurrent multiplet which is conformal in the sense that the energy-

momentum tensor vanishes, but which has non-local aspects [42]. The SG multiplet consists

of the graviton, the gravitino and the six-form potential B6 with field strength H7 = dB6;

in practice we will use the dual of H7,0 which we write as Gabc. The partial on-shell nature

is reflected in the constraints which hold for the scalar curvature and the double gamma-

trace of the gravitino field strength Ψab. There is a fully off-shell version of the supergravity

theory [41], consisting of this multiplet together with two entire scalar superfields, but one

of the latter has dimension −6 and can only be non-zero starting at order α′3.3 As we

shall only be interested in the field equations up to order α′2 it is therefore reasonable to

take the supergravity constraints to be those of the 128 + 128 multiplet [43, 44]. We can

study the equations of motion by introducing the two-form potential B2 and its modified

field strength H3 satisfying dH3 = α′X4 : X4 := Tr(F 2 − R2) where F is the SYM

field strength tensor; this was done for the Chapline-Manton theory in [45 – 47] and more

generally in [32, 48 – 52] (see also [53 – 55] for a different perspective, and [56, 57] for a dual

3The second scalar superfield has dimension zero and contains the dilaton and dilatino.
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approach).4 Note, however, that at order α′3 the constraints must be changed because H7

obeys the modified Bianchi identity, dH7 = α′3X8, where X8 is an invariant eight-form

constructed from R,F whose form is determined by the anomaly-cancellation mechanism;

indeed, it was noted that this has to be the case in [60]. Moreover, it is precisely at this

order that the negative-dimension auxiliary field can first be non-zero and this also implies

a modification of the dimension-zero torsion [59, 44].

The torsion tensor is given by

Tαβ
c = −i(γc)αβ

Tαβ
γ = Tαb

c = 0

Tab
c = 0

Taβ
γ = (γbc)β

γGabc +
1

6
(γabcd)β

γGbcd

Tab
γ = Ψab

γ . (4.1)

We can decompose the gravitino field-strength into irreducible, gamma-traceless com-

ponents:

Ψab = ψab + γ[aψb] + γabψ , (4.2)

and the constraint referred to above is simply that ψ = 0. The components of the curvature

tensor are given by

Rαβ,cd = 4i

(

(γe)αβGcde +
1

6
(γcdefg)αβG

efg

)

Rαb,cd =
i

2
(γbΨcd − γdψbc + γcψbd)α (4.3)

while the leading component of Rab,cd is the spacetime curvature. The curvature scalar

obeys the constraint

R = 12GabcG
abc . (4.4)

The non-zero components of H7 are

Habcdeαβ = −i(γabcde)αβ , (4.5)

or, more concisely, H5,2 = −iγ5,2, and

Habcdefg = −2εabcdefghijG
hij . (4.6)

We shall only need the three-form to zeroth order in α′. Its non-zero components are

Hαβc = −iS(γc)αβ

Habγ = −(γabχ)γ

(4.7)

4An up-to-date summary and clarification can be found in [58].
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as well as Habc. The scalar field S = exp 2φ/3, where φ is the dilaton, and the dilatino is

defined by χα = DαS. The H3 Bianchi identity also implies that

Gabc =
1

12
exp

(

−2φ

3

)

Habc (4.8)

and

Dαχβ =
i

2
(γa)αβDaS − i

36
Habc . (4.9)

The above equations are valid in what we shall refer to as the brane frame; the relation

between the bosonic metrics in the two frames is

gB = exp

(

−2φ

3

)

gS . (4.10)

At leading order the SYM field strength F obeys the usual constraint that Fαβ = 0; it

follows that

Fαb = (γbΛ)α , (4.11)

where Λα is the gaugino field. We then find that

DαΛβ = − i

4
(γab)α

βFab

DαFab = 2(γ[a)Db]Λ)α − 2(T[aγb]Λ)α , (4.12)

where Ta denotes the dimension-one torsion viewed as a matrix in spin space. In principle,

there could be corrections to Fαβ at order α′, but we shall not consider these here as it

is probable that such corrections vanish. At order α′2, however, there is the well-known

correction which corresponds to the F 4 term in the Born-Infeld action [61, 62]. In flat

superspace it is proportional to

(2)

F αβ= α′2(γabcde)αβΛγabcΛFde . (4.13)

In a supergravity background this has to be modified slightly:

(2)

F αβ= α′2(γabcde)αβΛγabcΛ(e2φ/3Fde +
i

2
χγdeΛ) , (4.14)

in the brane frame.

4.2 Invariants

Higher-order corrections to the heterotic string action have been studied for many years,

see, for example, [63 – 66]. The simplest complete supersymmetric invariant that can be

written down in d = 10 is [67]

I =

∫

d10x d16θ Eg(φ) , (4.15)

where E is the superdeterminant of the supervielbein. Clearly supersymmetry does not

completely fix this because it is an invariant for any function g. It will lead to an R4 term
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in spacetime as long as the fourth derivative of g is not zero. The heterotic tree-level R4

term is of this type. In the ectoplasmic approach this invariant is generated by an f0,3

which is schematically of the form D11g(φ). It is interesting to note that the so-called non-

minimal anomaly-free supergravity models have a non-vanishing H0,3 which has a similar

structure [68, 69].

The remaining invariants we shall consider are of the Chern-Simons type and are

completely fixed by supersymmetry. We shall not go into the full details here but we shall

show that such invariants do indeed exist and identify the corresponding J5,5s in some

cases. There are two possible closed eleven-forms:

W (1) := α′3H3X8 and W (2) = α′H7X4 . (4.16)

In order to show that these define invariants of the Chern-Simons type we have to

show that they can be written in the form W (i) = dK(i) for some tensorial Ks. Consider

W (1): since we are only working to order α′3 we only need to know the field strengths to

zeroth order. We know that F0,2 = 0, but it can be shown that it is also possible to choose

R0,2 = 0 at this order on-shell [38]. This means that the lowest non-zero component of

X8 will be X4,4, and therefore the lowest component of W (1) is W
(1)
5,6 . The task is to show

that this can be written as t0K
(1)
6,4 ; if this is the case then the fact that Hp,q

t = 0 for p ≥ 6

indicates that there are no further obstructions to the existence of a suitable K(1). Since

X8 is closed it follows that t0X4,4 = 0 and so X4,4 = γ5,2X
1,0
0,2 . So

W5,6 ∼ γ1,2(γ5,2X
1,0
0,2 )

∼ γ5,2(γ1,2X
1,0
0,2 )

∼ t0(γ5,2X1,2) , (4.17)

whereX1,2 is the form obtained by lowering the upper even index onX1,0
0,2 and where we have

made use of γ1,2γ5,2 = 0. Thus the result is established; the invariant can be obtained from

J = K−Z by the general procedure. Since these terms include the anomaly-cancelling CS

terms Z it follows that they arise at one-loop in the heterotic string, but one can explicitly

check that the correct factor of eφ (i.e. no factor in the string frame) is present in the

fourth-order field strength terms which arise from K(1).

Now let us consider W (2). Its lowest component is W
(2)
5,6 ∼ γ5,2X0,4. In this case we

know from the BPT theorem [32] that Tr(R ∧ R) can be written as an exact form up

to a four-form whose leading component is of type (2, 2), from which it follows that the

geometrical part of W (2) is guaranteed to be of the required dK(2) form to the order we are

considering. The same will be automatically true for the Tr(F ∧F ) term, up to order α′2,

provided that there is no order α′ correction to F0,2, which we assume to be the case. We

therefore conclude that supersymmetric invariants can indeed be constructed from W (2).

In the case of W (2) we can consider expanding the field strengths up to order α′2, so

that we can obtain invariants at first, second and third order in α′. For example, at α′3

there will be terms involving F 4 coming from Tr(R∧R). These can arise as follows: since

R0,2 ∼ G, we find that K
(2)
6,4 has term from Tr(R∧R) of the form G2. Now at order α′ it is
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easy to see that there is a contribution to G of the form e−2φ/3Λ2 and hence K
(2)
6,4 contains

e−4φ/3Λ4. Since we need four odd derivatives to arrive at K10,0 we will therefore obtain an

F 4 term in the spacetime invariant. It turns out that this term is at tree level in string

theory; i.e. it has a factor of e−2φ in the string frame. As expected from the analysis of [63],

this term is proportional to Tr(F 2)Tr(F 2) since it comes from the square of the Yang-Mills

scalar G. On the other hand, there is a second way of obtaining F 4 and that is from the α′2

deformation of F0,2. This term is proportional to Tr(F 4) and is actually a one-loop term

and must therefore be partnered with the B2X8 in the effective string action. This is to be

expected as it is easy to see in components that the equations of motion of the two-form

and six-form theories with CS terms and modified field strengths are indeed equivalent.

For both of the CS invariants we have been discussing, the lowest component of K is

at least K6,4, so that the lowest relevant component of J , namely J5,5 = γ5,2f0,3, actually

comes from the CS term. We shall conclude this subsection by working out f0,3 explicitly for

the one-loop SYM F 4 term from both W s. To make life easier we shall consider an abelian

gauge field and a flat supergravity background. Consider first H7F
2: the CS potential Z

can be chosen to be H7Y3 where Y is the CS three-form for F 2. Thus

J5,5 = γ5,2Y0,3 , (4.18)

and hence f0,3 = Y0,3. Now we have to include the α′2 corrections in F 2, so that

Yαβγ = A(α

(2)

F βγ) , (4.19)

and of course one takes the gamma-traceless part in the action. This expression agrees

with the f0,3 calculated explicitly from string amplitudes in the pure spinor approach as

expected (see section 5).

On the other hand, in the H3 version, we have Z = H3X4Y3 in the abelian case with

X4 = F 2. The lowest component of Z is therefore Z4,6 ∼ H1,2F1,1F1,1Y1,2. We first show

that this is t0 exact. We note that the only non-zero component of H in flat space is

H1,2 ∼ γ1,2 while the fact that F0,2 = 0 implies that

Y0,3 = 0

t0Y1,2 = 0

d1Y1,2 + t0Y2,1 = 0 . (4.20)

Let us define M := H3F ; it is straightforward to show that its lowest component, M2,3,

can be written

M2,3 = t0N3,1 , (4.21)

where Nabcδ ∼ (γabcΛ)δ. Using (4.20) and (4.21) we find

Z4,6 = −t0(N3,1F1,1Y1,2) (4.22)

and so can be gauged away. At the next level

Z5,5 = H1,2((F1,1)
2Y2,1 + 2F1,1F2,0Y1,2) . (4.23)
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With a little algebra it is not difficult to see that

Z5,5 + d1(N3,1F1,1Y1,2) = (M3,2 − d1N3,1)(F1,1)
2A0,1 + t0 − exact . (4.24)

Since dM = 0 it follows that M3,2 − d1N3,1 is t0-closed. The exact part of this can be

ignored in (4.24), and the non-trivial part is proportional to γ5,2F
2,0 (where F 2,0 is F2,0

with raised indices). The constant of proportionality cannot be zero since then Z5,5 would

also be trivial and the entire invariant would be a total derivative which it clearly is not.

We also know that F 2
1,1 ∼ γ5,2L

3,0, where Labc = ΛγabcΛ. Hence, up to gauge terms

Z5,5 ∼ (γ5,2F
2,0)(γ5,2L

3,0) . (4.25)

If we discard all the gauge terms the resulting Z5,5 must be t0-closed, and it must be

non-trivial. We can therefore choose a gauge in which

Z5,5 ∼ γ5,2f0,3 = γ5,2A0,1

(2)

F 0,2 (4.26)

in agreement with the previous calculation.

5. Invariants from superstring amplitudes

5.1 Heterotic superstring amplitudes

TheN = 1 d = 10 invariants constructed in the previous section can easily be verified to lin-

earised order by comparing with heterotic superstring scattering amplitude computations

using the pure spinor formalism. In comparing the invariants with scattering amplitudes,

it is important to note that scattering amplitudes are computed using vertex operators

constructed from superfields which satisfy linearised equations of motion. These linearised

equations of motion do not receive α′ corrections, and are invariant under linearised super-

symmetry transformations of the superfields.

However, the N = 1 d = 10 invariants of this paper are constructed using superfields

which satisfy non-linear equations of motion, and whose supersymmetry transformations

are also non-linear. This means that invariants which are lowest order in α′ and which

vanish on-shell (such as the supersymmetrisation of the Einstein-Hilbert term
∫

d10x
√
gR)

are zero (or total derivatives) using the superform method with on-shell superfields. Nev-

ertheless, superstring scattering amplitudes will include non-linear contributions from such

invariants (such as the tree-level scattering of three gravitons).

On the other hand, for invariants which are lowest order in α′ and do not vanish on-

shell (such as the non-abelian super-Yang-Mills action), the superform method allows the

construction of the complete invariant with manifest non-linear supersymmetry. However,

scattering amplitudes will only be able to compute contributions from these invariants

order-by-order in the linearised superfields, and these contributions will be manifestly in-

variant under the linearised supersymmetry.

In a flat background, heterotic superstring scattering amplitudes computed using the

pure spinor formalism are expressed as

A = 〈f(λ, x, θ)〉 (5.1)
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where f(λ, x, θ) = λαλβλγfαβγ(x, θ) is a superfield of ghost-number 3, and 〈 〉 denotes the

zero mode measure factor defined such that

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1. (5.2)

When f(λ, x, θ) satisfies Qf = 0 where Q = λαDα is the BRST operator, the amplitude

A = 〈f(λ, x, θ)〉 is spacetime supersymmetric. It is not difficult to verify that the resulting

invariant corresponds to J5,5 = γ5,2f0,3 where f0,3 = fαβγ . So the superform method for

constructing invariants is directly related to the zero-mode measure factor in the pure

spinor formalism.

For three-point heterotic massless tree amplitudes,

A = (α′)−2〈V1(z1)V2(z2)V3(z3)〉 (5.3)

where V = c̄λα[AαI(x, θ)J
I +Bαm(x, θ)∂̄xm] is the massless vertex operator, c̄ is the right-

moving reparameterization ghost, JI are the right-moving currents for the gauge group,

and AαI and Bαm are the linearised superfields for super-Yang-Mills and supergravity.

When AαI and Bαm satisfy the equations of motion

(γmnpqr)αβDαAβI = (γmnpqr)αβDαBβm = 0, ∂mBβm = ∂n∂nAβI = ∂n∂nBβm = 0,

(5.4)

the vertex operator V is BRST-closed with respect to the left and right-moving BRST

operators, Q =
∫

dz λαdα and Q̄ =
∫

dz̄(c̄T̄ + bc̄∂̄c) where T̄ is the right-moving stress

tensor. It is easy to check that these equations for AαI and Bαm describe the linearised

on-shell super-Yang-Mills and supergravity fields.

After integration over the right-moving worldsheet fields, one obtains the expression

A = 〈f(λ, x, θ)〉 where

fαβγ = α′Tr(A1
αA

2
βA

3
γ) + α′(k2 · B1

α)(k3 ·B2
β)(k1 ·B3

γ)

+α′(B1
α · k2)Tr(A2

βA
3
γ) + α′(B2

α · k3)Tr(A3
βA

1
γ) + α′(B3

α · k1)Tr(A3
βA

1
γ)

+(B1
α ·B2

β)(k1 ·B3
γ) + (B2

α ·B3
β)(k2 ·B1

γ) + (B3
α · B1

β)(k3 · B2
γ) . (5.5)

The terms in fαβγ proportional to α′ correspond to the cubic on-shell terms in W (2)

of equation (4.15), whereas the terms independent of α′ come from the cubic terms in the

Einstein-Hilbert action. For example, α′Tr(A1
αA

2
βA

3
γ) is the onshell contribution to the

Yang-Mills Chern-Simons term Y0,3 in equation (4.18).

Since three-point massless amplitudes do not receive α′ corrections, one needs to con-

sider higher-point amplitudes to check invariants which are higher orders in α′. For ex-

ample, the four-point one-loop amplitude has been shown to lowest order in α′ to be

proportional to [70] A = 〈λαλβλγfαβγ(x, θ)〉 where

fαβγ = Tr[A1
α(γmnpqr)βγ(Λ2γmnpΛ

3)F 4
qr] + permutations. (5.6)

Comparing with (4.13), one sees that J5,5 = γ5,2f0,3 where f0,3 = Tr(AαF
(2)
βγ ) as

desired.

– 17 –



J
H
E
P
0
6
(
2
0
0
8
)
0
4
6

5.2 N = 2 d = 10 invariants

Just as N = 1 d = 10 invariants are related to scattering amplitudes for heterotic or open

superstrings, N = 2 d = 10 invariants are related to scattering amplitudes of Type II

superstrings. Since vertex operators of Type II superstrings can be expressed as left-right

products of open superstring vertex operators, it is natural to propose that N = 2 d = 10

invariants are related to superforms

f0,3,3 ∼ fαβγα̂β̂γ̂ (5.7)

where the first subscript denotes the number of vector indices, the second subscript denotes

the number of unhatted “left-moving” spinor indices, and the third subscript denotes the

number of hatted “right-moving” spinor indices. For the Type IIA superstring, hatted and

unhatted spinor indices have opposite chirality, while for the Type IIB superstring, they

have the same chirality.

Type II superstring amplitudes using the pure spinor formalism are expressed as

A = 〈f〉 (5.8)

where f = λαλβλγλ̂α̂λ̂β̂ λ̂γ̂fαβγα̂β̂γ̂ is BRST closed with respect to Q =
∫

dzλαdα and

Q̄ =
∫

dz̄λ̂α̂d̂α̂, λα and λ̂α̂ are pure spinors satisfying λγaλ = λ̂γαλ̂ = 0, and

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)(λ̂γ
q θ̂)(λ̂γrθ̂)(λ̂γsθ̂)(θ̂γqrsθ̂)〉 = 1. (5.9)

So, at least to linearised level, there is a supersymmetric N = 2 d = 10 invariant

associated with f0,3,3. For the N = 2A case, one can relate this invariant with the superform

method by defining

J0,5,5 = γabcde
(δǫ fαβγ)(α̂β̂γ̂(γabcde)δ̂ǫ̂), (5.10)

which is the component of lowest dimension of a closed 10-form as we shall show in subsec-

tion (5.4). However, an analogous construction does not work for the N = 2B case since

γabcde
δκ (γabcde)δ̂κ̂ = 0 if the hatted and unhatted spinor indices have the same chirality.

An alternative method for constructing N = 2A d = 10 invariants is to dimensionally

reduce N = 1 d = 11 invariants. Using the pure spinor version of the d = 11 superme-

mbrane, amplitudes are computed as A = 〈f〉 where f has ghost-number seven and the

zero model measure factor is of the form 〈(θ)9(λ)7〉 = 1. The resulting d = 11 invariant is

obtained from the superform whose component of lowest dimension is J2,9 = γ2,2f0,7. This

invariant can be obtained directly as a CS invariant starting from the closed twelve-form

W = G4X8, where G4 is the supergravity four-form field strength and X8 the anomaly-

cancelling R4 eight-form [17]. It is reasonable to assume that the lowest non-vanishing

component of K is K3,8 , so that J2,9 = −Z2,9. From this we conclude that it is possible

to take f0,7 to be proportional to Y0,7 where dY7 = X8.

To dimensionally reduce, suppose that the d = 11 superform Jn+1,10−n =

Ja1...an+1 α1...α10−n
is independent of the d = 11 coordinate x11. Then it is easy to show

that

Jd=10
n,10−n ≡ Jd=11

11 a1...an α1...α10−n
(5.11)
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is a closed 10-form which defines an N = 2A d = 10 invariant. Note that Jd=11
n,11−n vanishes

for n < 2, so Jd=10
n,10−n vanishes for n < 1 when defined using this method.

An obvious question is how to relate these superstring and supermembrane construc-

tions of N = 2A d = 10 invariants. The relation is not obvious since the supermembrane

method constructs an invariant whose component of lowest dimension is J1,9, whereas the

invariant constructed using the superstring method has J0,10 as its component of lowest di-

mension. Furthermore, J0,10 constructed using the superstring method has five hatted and

five unhatted indices, whereas the supermembrane-derived J1,9 naively has no restriction

on the relative number of hatted and unhatted spinor indices.

5.3 Proposal for N = 2 invariants using doubled superspace

In the previous subsection, we presented two approaches for constructingN = 2A invariants

using the superform method. However, despite the fact that Type IIA and Type IIB

superstrings are related by T-duality, neither of these approaches appear to be useful for

constructing N = 2B invariants. In this subsection, we present an alternative proposal

for constructing N = 2 invariants which works equally well for N = 2A and N = 2B.

However, we have not yet checked the consistency of this proposal at the non-linear level.

This alternative proposal for constructing N = 2 supersymmetric invariants involves

doubling both the number of bosonic coordinates and fermionic coordinates; it was first

discussed in [71, 72]. The bosonic coordinates in this “doubled” superspace will be called

xm and x̂m̂ for m, m̂ = 0 to 9, and the fermionic coordinates will be called θµ and θ̂µ̂ for

µ, µ̂ = 1 to 16. One then defines the supervierbeins EM
A and EM̂

Â where M = (m,µ)

and M̂ = (m̂, µ̂) describe the curved coordinates and A = (a, α) and Â = (â, α̂) describe

the tangent-space indices. In a flat background, the only non-vanishing torsions will be

defined to be Tαβ
a = −i(γa)αβ and Tα̂β̂

â = −i(γâ)α̂β̂.

Such a doubled formalism has previously appeared in discussions of T-duality for the

heterotic superstring [73, 74] as well as in the Type II superstring. Although we have not

yet checked the consistency of the latter construction at the non-linear level (see [75] for

some partical results on this), we think it is a promising possibility for constructing N = 2

d = 10 invariants using the superform method.

Superforms fA1...A10;Â1...Â10
in this “doubled” superspace contain 10 unhatted indices

and 10 hatted indices, where A is either a or α and Â is either â or α̂. Furthermore, all

components f of this superform are constrained to satisfy

∂

∂xm
f =

∂

∂x̂m̂
f (5.12)

so that f only depends on 10 bosonic and 32 fermionic coordinates. It is easy to see that

if f is a closed 20-form satisfying the above constraint the integral

∫

d10x|x̂=x ǫ
m1...m10 ǫm̂1...m̂10 fm1...m10;m̂1...m̂10

(5.13)
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is invariant under N = 2 d = 10 supersymmetry where
∫

d10xx̂=x means that one is to set

x̂m̂ = xm and integrate over xm. Note that this invariant can also be written as

∫

d10x

∫

d10x̂ ǫm1...m10 ǫm̂1...m̂10 fm1...m10;m̂1...m̂10
(5.14)

where xm − x̂m̂ is defined to take values on a compact space of unit volume.

Using this doubled superspace, we conjecture that a closed (10; 10) superform can be

constructed such that the component of f with lowest dimension is

f5,5;5,5 = γ5,2;0,0 γ0,0;5,2 f0,3;0,3 (5.15)

where γ5,2;0,0 = γm1...m5

αβ , γ0,0;5,2 = γm̂1...m̂5

α̂β̂
, and f0,3;0,3 is defined in eq. (5.7). At the

linearised level, it is easy to see that such a definition would lead to the invariants described

by Type II superstring amplitudes using the measure factor of eq. (5.9). For example, just

as the cubic super-Yang-Mills amplitude is described by f0,3 = AαAβAγ where Aα is the

spinor super-Yang-Mills gauge potential, the cubic contribution to N = 2 supergravity

is described by f0,3;0,3 = Bαα̂Bββ̂Bγγ̂ where Bαα̂ is the spinor-spinor component of the

antisymmetric tensor superfield which can be interpreted as the “left-right” product of two

spinor super-Yang-Mills gauge potentials.

5.4 Remarks on N = 2, d = 10 cohomology

Provided that the Hp,q
t cohomology groups are determined by scalar branes, for N = 2, d =

10 it follows that these will only be non-zero for p = 0, 1, since there are only strings in

this case. Consider a t0-closed (1, q)-form ω in IIA; it can be written

ω1,q = Γ♮
1,2µ0,q−2 , (5.16)

where Γ♮
1,2 denotes ΓaΓ11 viewed as a (1, 2)-form and where Γ denotes the 32 × 32 Dirac

matrices. Now ω will change by a t0 exact term if µ does, but it will also do so if µ is

changed by Γ♮
0,2ρ0,q−4. This means that the d = 10 IIA group H1,q

t is isomorphic to the

d = 11 group H0,q−2
t , q ≥ 2. This explains how dimensional reduction from d = 11 to

N = 2, d = 10 works cohomologically because the relevant groups are still the d = 11 ones.

In IIB there are two strings and hence two possible (1, 2)-forms which can be used to

write down elements of H1,q
t .

There are other groups we can consider in N = 2 as there is now a triple-grading of

forms: Ωp,q =
∑

r+s=q Ωp,r,s, where the (r, s) labels correspond to unhatted and hatted odd

indices. We also have

t0 = τ0 + τ̂0 (5.17)

d1 = ∂1 + ∂̂1

t1 = τ1 + τ̂1 ,

where the tri-degrees are (−1, 2, 0) ((−1, 0, 2) for τ0 (τ̂0), (0, 1, 0) ((0, 0, 1) for ∂1 (∂̂1) and

(2,−1, 0) ((2, 0,−1)) for τ1 (τ̂1). In principle one could also have a component of t0 with
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tri-degree (−1, 1, 1) but it vanishes in on-shell supergravity. One can easily write out d2 = 0

in terms of these operations. There are various cohomology groups that can be constructed.

For example, one can define Hp,r,s
τ , the space of τ0-closed (p, r, s)-forms modulo the exact

ones. Since ∂1τ0 + τ0∂1 = 0 and ∂2
1 + τ0d0 + d0τ0 = 0 we can define spinorial cohomology

groups of the form Hp,r,s
s , and similarly for the hatted sector. However, in general it does

not seem to be very easy to analyse the spinorial cohomology groups we are interested in

terms of these partial ones.

We shall give one example, in IIA, which relates to the J0,5,5 discussed in eq.(5.10).

Suppose we have a (0, r, s)-form ω0,r,s, with r, s ≥ 3, and suppose that

ω0,r,s = Γ0,2,2f0,r−2,s−2 , (5.18)

where

Γ0,2,2 := γ5,2,0γ
5
,0,2 , (5.19)

i.e. the contraction of two five-index gamma-matrices considered as a (0, 2, 2)-form. We

would like to construct a closed (r + s)-form ω starting from ω0,r,s. We can solve the first

non-trivial component of dω = 0 if

∂1ω0,r,s + τ0ω1,r−1,s = 0 (5.20)

τ̂0ω1,r−1,s = 0 ,

and similarly for the hatted components. The first of these is satisfied if

∂1f0,r−2,s−2 + τ0f1,r−3,s−2 = 0 . (5.21)

If this is so, then

∂1ω0,r,s = −Γ0,2,2τ0f1,r−3,s−2 (5.22)

= −(γ5,2,0γ
5
,0,2)(γ1,2,0f

1
,r−3,s−2) .

Now we can use the fact that γ5,2,0γ1,2,0 = 0 to shuffle the indices so that the even

index on γ1,2,0 is contracted with one of the even indices of γ5
,0,2. This means that we can

choose ω1,r−1,s to be

ω1,r−1,s = γ5,0,2g
4
,r−1,s−2 , (5.23)

where

g4,r−1,s−2 ∼ γ5,2,0f
1
,r−3,s−2 . (5.24)

It is now immediate that ω1,r−1,s defined by (5.23) is annihilated by τ̂0. Similar con-

siderations apply to ω1,r,s−1.

6. Discussion

In this paper, we combined the superform method with pure spinor cohomology to construct

invariants with manifest N = 1 d = 10 supersymmetry. This method was used to construct

on-shell invariants of the heterotic superstring effective action up to order (α′)3 corrections
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including supersymmetrisation of the F 2, R2, F 4, R4, BF 4 and BR4 terms. Although

we did not attempt to expand these invariants in terms of component fields it should

be straightforward to perform this component expansion by evaluating the Jn,10−n forms

which appear in the invariants.

There are several possible generalisations of our results. One obvious one is to construct

invariants for terms in the effective action which are higher-order in α′. It would be very

interesting to identify restrictions imposed by supersymmetry which constrain the possible

couplings to the dilaton. Since the dilaton counts loops, these restrictions might be used

for testing string duality conjectures as in [76].

Another possible generalisation is to use the superform method to construct d = 11 and

N = 2 d = 10 invariants. As discussed in section (5.2), there are some unresolved puzzles

concerning the relation of these invariants, and it would also be of interest to investigate

further the doubled superspace proposal of section (5.3).
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[30] R. D’Auria, P. Fré, P.K. Townsend and P. van Nieuwenhuizen, Invariance of actions,

rheonomy and the new minimal N = 1 supergravity in the group manifold approach, Ann.

Phys. (NY) 155 (1984) 423.

[31] I.A. Bandos, D.P. Sorokin and D. Volkov, On the generalized action principle for superstrings

and supermembranes, Phys. Lett. B 352 (1995) 269 [hep-th/9502141].

[32] L. Bonora, P. Pasti and M. Tonin, Superspace formulation of 10D Sugra+Sym theory a la

Green-Schwarz, Phys. Lett. B 188 (1987) 335.

[33] P.S. Howe, K.S. Stelle and P.K. Townsend, Superactions, Nucl. Phys. B 191 (1981) 445.

[34] A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2

matter, Yang-Mills and supergravity theories in harmonic superspace, Class. and Quant.

Grav. 1 (1984) 469.

[35] G.G. Hartwell and P.S. Howe, (N, P, Q) harmonic superspace, Int. J. Mod. Phys. A 10

(1995) 3901 [hep-th/9412147].

[36] T. Biswas and W. Siegel, N = 2 harmonic superforms, multiplets and actions, JHEP 11

(2001) 004 [hep-th/0105084].

[37] P.S. Howe, O. Raetzel and E. Sezgin, On brane actions and superembeddings, JHEP 08

(1998) 011 [hep-th/9804051].

[38] L. Bonora, P. Pasti and M. Tonin, Chiral anomalies in higher dimensional supersymmetric

theories, Nucl. Phys. B 286 (1987) 150.

[39] N. Berkovits, Cohomology in the pure spinor formalism for the superstring, JHEP 09 (2000)

046 [hep-th/0006003].

[40] B.E.W. Nilsson, Simple ten-dimensional supergravity in superspace, Nucl. Phys. B 188

(1981) 176.

[41] P.S. Howe, H. Nicolai and A. Van Proeyen, Auxiliary fields and a superspace Lagrangian for

linearized ten-dimensional supergravity, Phys. Lett. B 112 (1982) 446.

[42] E. Bergshoeff and M. de Roo, The supercurrent in ten-dimensions, Phys. Lett. B 112 (1982)

53.

[43] B.E.W. Nilsson and A.K. Tollsten, The geometrical off-shell structure of pure N = 1 D = 10

supergravity in superspace, Phys. Lett. B 169 (1986) 369.

[44] P.S. Howe and A. Umerski, On superspace supergravity in ten-dimensions, Phys. Lett. B 177

(1986) 163.

[45] R.E. Kallosh and B.E.W. Nilsson, Scale invariant D = 10 superspace and the heterotic string,

Phys. Lett. B 167 (1986) 46.

[46] B.E.W. Nilsson and A.K. Tollsten, Superspace formulation of the ten-dimensional coupled

Einstein Yang-Mills system, Phys. Lett. B 171 (1986) 212.

[47] J.J. Atick, A. Dhar and B. Ratra, Superspace formulation of ten-dimensional N = 1

supergravity coupled to N = 1 super Yang-Mills theory, Phys. Rev. D 33 (1986) 2824.
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